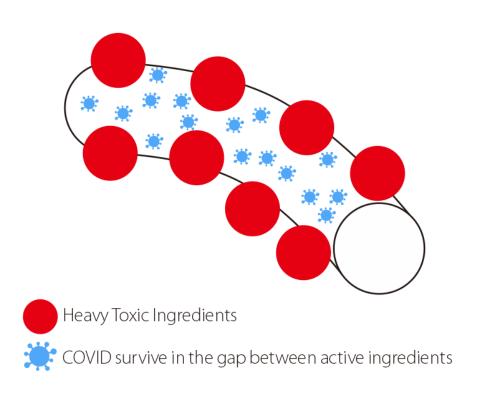
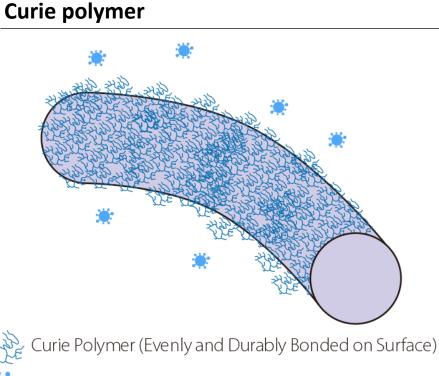
C-Polar Technology

March 11, 2021

Masks serve as the first line of defense against COVID-19; however, their effectiveness is often lacking


Masks only have a 75% protection rate against the COVID-19 virus


 A study conducted by the University of Hong Kong showed that hamsters who were protected by a surgical mask partition still had a 25% chance of being infected by the COVID-19 virus. Consequently, frontline healthcare workers have suffered disproportionately, despite their PPE

- Frontline healthcare workers, who are typically equipped with the highest grade of masks and PPE, experience high levels of infection.
- In November 2020, *The International Journal of Infectious Diseases* found that approximately 300,000 healthcare workers from 37 countries had been infected with COVID-19.
- The CDC estimates that more than 415,000 healthcare personnel in the United States had been infected, with close to 1,400 dying from the disease

Our company has developed a polymer to "capture and kill" COVID-19 with 99.98% effectiveness

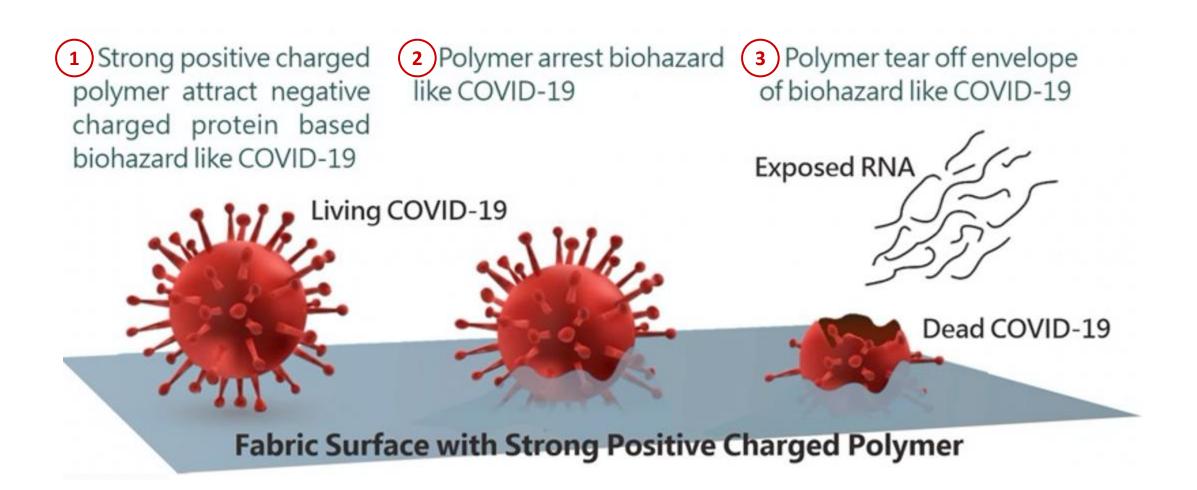
Traditional mask

COVID is difficult to hide

We take advantage of the COVID-19 virus' negatively charged structure

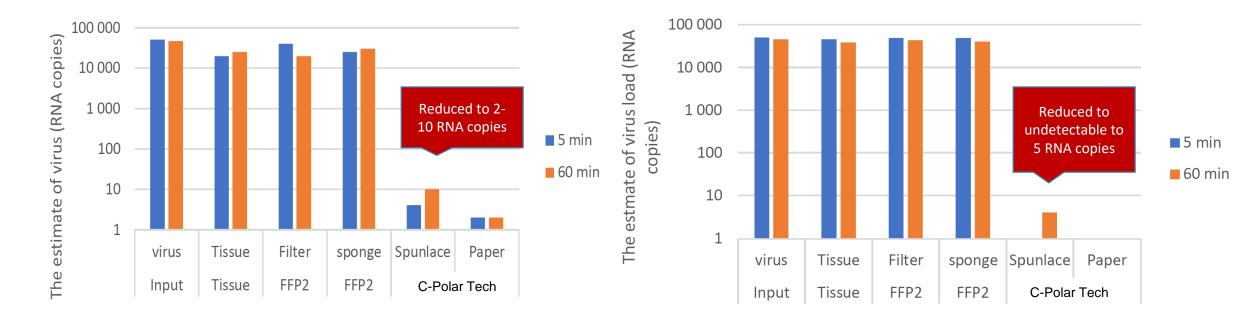
Negatively charged residues in the endodomain are critical for specific assembly of spike protein into murine coronavirus

Qianqian Yao,^a Paul S. Masters,^b and Rong Yea,*


► Author information ► Article notes ► Copyright and License information Disclaimer

This article has been <u>cited by</u> other articles in PMC.

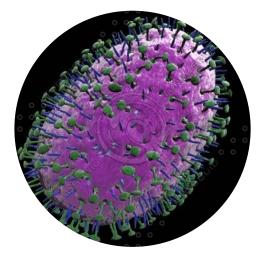
Abstract

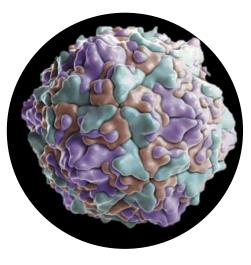

Go to: 🖂

Coronavirus spike (S) protein assembles into virions via its carboxy-terminus, which is composed of a transmembrane domain and an endodomain. Here, the carboxy-terminal chargerich motif in the endodomain was verified to be critical for the specificity of S assembly into mouse hepatitis virus (MHV). Recombinant MHVs exhibited a range of abilities to accommodate the homologous S endodomains from the betacoronaviruses bovine coronavirus and human SARS-associated coronavirus, the alphacoronavirus porcine transmissible gastroenteritis virus (TGEV), and the gammacoronavirus avian infectious bronchitis virus respectively. Interestingly, in TGEV endodomain chimeras the reverting mutations resulted in stronger S incorporation into virions, and a net gain of negatively charged residues in the chargerich motif accounted for the improvement. Additionally, MHV S assembly could also be rescued by the acidic carboxy-terminal domain of the nucleocapsid protein. These results indicate an important role for negatively charged endodomain residues in the incorporation of MHV S protein into assembled virions. ... And use a positively charged polymer to capture and kill the COVID-19 virus

A study conducted by Finland Tampere University proved that C-Polar Technology significantly reduced COVID-19 virus substitutes*

C-Polar Technology significantly reduced SARS-229E RNA copies compared to controls (tissue, FFP2 filter, FFP2 sponge) C-Polar Technology significantly reduced Coxsackievirus-B6 RNA copies compared to controls (tissue, FFP2 filter, FFP2 sponge)


Conclusion from Finland Study


- Have a clear ability to
 - Arrest and Inhibit coronavirus and enterovirus with a 99.9% ratio
 - 99.9% reduction after short incubation time (5 mins)
 - Rapid effect on the viruses
 - No Cytotoxicity to human lung cells for mask applications and other external applications
- Enterovirus and coronavirus are structurally different
 - Highly likely to achieve similar results with other viruses as well
- A promising substance for masks and other applications that aim at preventing virus spread

This study demonstrate that C-Polar Technology exhibits capture and kill against many forms of virus

SARS-CoV-2 / SARS-229E (Spike Protein + Envelope)

H3N2 (Pleomorphic Envelope)

Coxsackievirus-B6 (Non-Enveloped, Icosahedral Capsid)

C-Polar technology compares favorably against potential competitor products across several key dimensions

	Our product			Potential competitors							
	C-Polar		Disinfectant on meltblown mask			I3 Biomedical		Zen Graphene		Pharm2Farm	
How does it work?	Uses a strong positively charged polymer to capture and kill negatively charged COVID virus		Kills virus on a normal mask's outer surface by applying a disinfectant spray		Kills virus using the cytotoxicity of iodine		Kills virus using the cytotoxicity of graphene		Kills virus using the cytotoxicity of copper		
Does it capture the virus in fast air flow?	\bigotimes	Research showed that C- Polar was able to capture more than 99.9% of the virus and bacteria in fast air flow	\otimes	Applying disinfectant on a mask does not result in the mask capturing the virus	\otimes	lodine does not generate extra attractive force towards the virus	\otimes	Graphene does not generate extra attractive force towards the virus	\otimes	Copper does not generate extra attractive force towards the virus	
Does it kill 99.9% of the virus in a short time frame?	\bigotimes	Research showed that C- Polar was able to kill 99.9% of the virus and bacteria in a short time frame	\otimes	Water in disinfectant discharges electrostatic force, reducing filtration efficiency of the mask. Disinfectant disappears after 5 minutes due to volatility	\otimes	Deactivates 99% but not 99.9% of the virus within minutes	\otimes	Research showed it was able to kill 99% of the virus in 35 days	\otimes	Research showed that it was able to kill 90% of the virus in 7 hours	
ls it non-toxic?	\bigotimes	Our polymer is created using a WHO-approved food additive, and is safe for human exposure	\otimes	Continual and frequent exposure to disinfectant damages the user's lung tissue	\bigotimes	No toxic effects on humans	\otimes	Graphene has toxic effects on humans	\otimes	Copper contains nanoparticles that have heavy toxicity against the human body	
ls it non- metallic?	\oslash	C-Polar does not contain metals (e.g. toxic metals like zinc, copper, or titanium)	\oslash	Disinfectant is made of isopropyl alcohol. It does not contain metals	\bigotimes	Does not contain metals	\otimes	Graphene is a metal	\otimes	Copper is a heavy metal	
Is it bio- degradable?	\oslash	The C-polar polymer is 100% biodegradable and causes no environmental damage	\otimes	Applying disinfectant on a meltblown mask does not result in biodegradability	\otimes	I3 Biomedical masks are not biodegradable and take centuries to degrade in landfills	\otimes	Zen Graphene masks are not biodegradable, and take centuries to degrade in landfills	\otimes	Copper is not biodegradable and results in soil pollution	