Future Possibilities on Curie Biotech

April 18, 2021

Masks serve as the 1st line of defense against COVID-19; however, their effectiveness is often lacking

Masks only have a 25%-75% protection rate against the COVID-19 virus

- A study conducted by the University of Hong Kong showed that hamsters who were protected by a surgical mask partition still had a 25% chance of being infected by the COVID-19 virus*
- A study conducted by Boston University showed that masks can only contribute 15%-25% efficiency on stopping transmission of COVID-19 mutation**

Consequently, frontline healthcare workers have suffered disproportionately, despite their PPE

- Frontline healthcare workers, who are typically equipped with the highest grade of masks and PPE, experience high levels of infection.
- In November 2020, *The International Journal of Infectious Diseases* found that approximately 300,000 healthcare workers from 37 countries had been infected with COVID-19.
- The CDC estimates that more than 415,000 healthcare personnel in the United States had been infected, with close to 1,400 dying from the disease

There is a need for an effective and affordable solution that can capture and kill the COVID-19 virus

*Surgical mask partition reduces the risk of non-contact transmission in a golden Syrian hamster model for Coronavirus Disease 2019 (COVID-19) Source: The University of Hong Kong **Mask-wearing and control of SARS-CoV-2 transmission in the USA: a cross-sectional study Source: The Lancet

Promising conclusion from Finland study on Curie biotech

- Have a clear ability to
 - Arrest and Inhibit coronavirus and enterovirus with a 99.9% ratio
 - 99.9% reduction after short incubation time (5 mins)
 - *Rapid effect* on the viruses
 - No Cytotoxicity to human lung cells for mask applications and other external applications
- Enterovirus and coronavirus are structurally different
 - Highly likely to *achieve similar results* with *other viruses* as well (Wide spectrum of viruses)
- A *promising substance* for masks and other applications that aim at *preventing virus spread*

To address this challenge, Curie has developed a polymer to "capture and kill" COVID-19 > 99.9% effectiveness within 5 mins

Other Antiviral Mask

Curie Polymer Curie Polymer (Evenly and Durably Bonded on Surface)

COVID is difficult to hide

We do this by using a positively charged polymer to capture and kill biohazards like COVID-19 (1/2)

We do this by utilizing a positively charged polymer to capture and kill biohazards like COVID-19 (2/2)

Microscopic view

Visual representation

Normal Bacterial Envelope

When the bacterial envelope senses the positive polymer, its negative phosphate head is pulled up

A study conducted by Finland Tampere University proved that Curie significantly reduced COVID-19 virus substitutes*

Curie biotech significantly reduced SARS-229E RNA copies compared to controls (tissue, FFP2 filter, FFP2 sponge)

Curie biotech significantly reduced Coxsackievirus-B6 RNA copies compared to controls (tissue, FFP2 filter, FFP2 sponge)

The estimate of virus (RNA copies)

This study demonstrate that Curie biotech exhibits capture and kill against many forms of virus

SARS-CoV-2 / SARS-229E (Spike Protein + Envelope)

H3N2 (Pleomorphic Envelope)

Coxsackievirus-B6 (Non-Enveloped, Icosahedral Capsid)

A study conducted by Finland Tampere University and Czech Academy of Science proved that cytotoxicity of Curie are better than some natural food additives

Curie liquid polymer is even safer than natural food additives such as Grapeseed, Citral and Lemongrass*

- Finland Tampere University:
 - Liquid polymer was directly applied on human lung cell
 - To simulate polymer of the filter fabric is pealing off under stress test
 - 0.5% of liquid polymer (12.5% of total polymer) does no harm on human lung cells
- Czech Academy of Science:
 - Filter fabric is vortexed 5-times for 5 seconds to wash out polymers on the filter fabric
 - 4% solid polymer on filter fabric does no harm on cells**
- Curie biotech does not have toxic effect on mask or similar application

Source: Antimicrobial activity, cytotoxicity and chemical analysis of lemongrass essential oil (Cymbopogon flexuosus) and pure citral, from the University of the West of England, Bristol

** Complete report shall be ready within April 2021

Source: Virology Research-Service Group, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science

^{*} Cytotoxicity of Grapeseed, Citral and Lemongrass

A study conducted by Hong Kong Open University proved that Curie biotech significantly killed 99.9% bacteria within 1 mins

Results:

Specimen	Conditions	Number of bacteria ^a (CFU per specimen)
#1	Shake-out before incubation	0
#2	Shake-out after incubation	0

^a1 millilitre of an inoculum of *Staphylococcus aureus* with concentration of 1×10^6 CFU/ml to 3×10^6 CFU/ml was applied onto an agar plate in the transfer method, where each specimen was set on the agar surface and weigh down with a 200 g stainless-steel cylinder for $60 \text{ s} \pm 5$ s to transfer the microbial content. Incubation Measurement of the number of bacteria colonies was conducted in accordance with the plate count method specified in Annex C of BS EN ISO 20743:2013.

- Have a clear ability to
 - Kill high dosage of Staphylococcus Aureus with a 99.9% ratio
 - 99.9% reduction after short incubation time (1 mins)
 - Rapid effect on the bacteria

Curie biotech compares favorably against potential competitor products across several key dimensions on mask application

Our product

	-									
	Curie Biotech		Disinfectant on meltblown mask		I3 Biomedical		Zen Graphene		Pharm2Farm	
How does it work?	Uses a strong positively charged polymer to capture and kill negatively charged COVID virus		Kills virus on a normal mask's outer surface by applying a disinfectant spray		Kills virus using the cytotoxicity of iodine		Kills virus using the cytotoxicity of graphene		Kills virus using the cytotoxicity of copper	
Does it capture the virus in fast air flow?	\bigotimes	Research showed that Curie was able to capture more than 99.9% of the virus and bacteria in fast air flow	\otimes	Applying disinfectant on a mask does not result in the mask capturing the virus	\otimes	lodine does not generate extra attractive force towards the virus	\otimes	Graphene does not generate extra attractive force towards the virus	\otimes	Copper does not generate extra attractive force towards the virus
Does it kill 99.9% of the virus in a short time frame?	\bigotimes	Research showed that Curie was able to kill 99.9% of the virus and bacteria in a short time frame	\otimes	Water in disinfectant discharges electrostatic force, reducing filtration efficiency of the mask. Disinfectant disappears after 5 minutes due to volatility	\otimes	Deactivates 99% but not 99.9% of the virus within minutes	\otimes	Research showed it was able to kill 99% of the virus in 35 days	\otimes	Research showed that it was able to kill 90% of the virus in 7 hours
Is it non-toxic?	\oslash	Safer than natural food additives	\otimes	Continual and frequent exposure to disinfectant damages the user's lung tissue	\bigotimes	No toxic effects on humans	\otimes	Graphene has toxic effects on humans, Health Canada ban it	\otimes	Copper contains nanoparticles that have heavy toxicity against the human body
Is it non- metallic?	\oslash	Curie does not contain metals (e.g. toxic metals like zinc, copper, or titanium)	\oslash	Disinfectant is made of isopropyl alcohol. It does not contain metals	\bigotimes	Does not contain metals	\bigotimes	Graphene is not a metal	\otimes	Copper is a heavy metal
Is it bio- degradable?	\bigotimes	The Curie polymer is 100% biodegradable and causes no environmental damage	\otimes	Applying disinfectant on a meltblown mask does not result in biodegradability	\otimes	I3 Biomedical masks are not biodegradable and take centuries to degrade in landfills	\otimes	Zen Graphene masks are not biodegradable, and take centuries to degrade in landfills	\otimes	Copper is not biodegradable and results in soil pollution

Potential competitors

Air filter serve as the 2nd line of defense against COVID-19; however, their effectiveness is often lacking

UVC required high dose and long duration to inactivate virus, while contact time of air with UVC treatment is extremely short

- A study conducted by Columbia University Center for Radiological Research discovered UVC long exposure to inactive coronavirus*
 - 90%: 8 Mins
 - 95%: 11 Mins
 - 99%: 16 Mins
 - 99.9%: 25 Mins
- Ineffective to inactivate coronavirus even when direct irradiating by UVC, from FDA recommendation**
- More difficult to inactivate of pathogen embedded in dust, soil, or other particulates with porous surface

Other risks and drawback of using UVC

- Accelerate the aging of filter bag and cause degradation of the certain materials in the air conditioning system
- Generate irritating ozone gas
- Release of toxic mercuric fume when the UVC tube is broken
- Consuming of electricity

need for an effective and affordable solution that can arrest and kill the COVID-19 virus

 * Far-UVC light (222nm) efficiently and safely inactivates airborne human coronaviruses Source: Columbia University
 ** UV Lights and Lamps: Ultraviolet-C Radiation, Disinfection, and Coronavirus Source: US Food & Drug Administration

FDA stated clearly on the risk of UVC in air conditioning system

Q: Is it safe to use a UVC lamp for disinfection purposes at home?

A: Consider both the risks of UVC lamps to people and objects and the risk of incomplete inactivation of virus.

Risks: UVC lamps used for disinfection purposes may pose potential health and safety risks depending on the UVC wavelength, dose, and duration of radiation exposure. The risk may increase if the unit is not installed properly or used by untrained individuals.

- Direct exposure of skin and eyes to UVC radiation from some UVC lamps may cause painful eye injury and burn-like skin reactions. Never look directly at a UVC lamp source, even briefly. If you have experienced an injury associated with using a UVC lamp, we encourage you to report it to the FDA.
- Some UVC lamps generate ozone. Ozone inhalation can be irritating to the airway.
- UVC can degrade certain materials, such as plastic, polymers, and dyed textile.
- Some UVC lamps contain mercury. Because mercury is toxic even in small amounts, extreme caution is needed in cleaning a lamp that has broken and in disposing of the lamp.

Effectiveness: The effectiveness of UVC lamps in inactivating the SARS-CoV-2 virus is unknown because there is limited published data about the wavelength, dose, and duration of UVC radiation required to inactivate the SARS-CoV-2 virus. It is important to recognize that, generally, UVC cannot inactivate a virus or bacterium if it is not directly exposed to UVC. In other words, the virus or bacterium will not be inactivated if it is covered by dust or soil, embedded in porous surface or on the underside of a surface.

Degraded of filter bag by UVC exposure, resulting in leakage of dusts including pathogens to the outlets and ducting

(Exposed to UVC around 1 month)

Testing results after 1 week of on-site operation in Hong Kong shopping mall, conducted by the Open University of Hong Kong

- Antibacterial activity of the outer layer of filter bag after the trial run
 - In accordance with BS EN ISO 20743: 2013 Clause 8.2
 - Transfer Staphylococcus Aureus onto the outer layer of filter bag
 - Compare the number of colonies results before and after 24 hours incubation of the contaminated outer layer

	Colonies found before incubation	Colonies found after incubation	Antibacterial Activity Value	Antibacterial Activity (%)	Remark
Sample A	6	0	6.54	> 99.99%	Curie Treated
Sample B	5	0	6.54	> 99.99%	Curie Treated
Sample C	10	25,600,000	0.13	-	Untreated
Sample D	13	28,800,000	0.20	-	Untreated

- *Reduction* of more than *1,000,000 flow* of *Staphylococcus Aureus* growth by *Curie filter*
- 2.56M 2.88M folds on Staphylococcus Aureus growth on untreated filter
- No efficiency lost on antiviral / antibacterial performance under strong air flow and harsh condition

Using Curie material to arrest and inactivate COVID-19 and other pathogens in air-conditioning system

To apply Curie material at the outer lay of filter bag

- As the gate keeper to inactivate bacteria and virus leaking from filter bag
- Demonstrated strong efficiency on arresting and inactivating wide ranges of viruses and bacteria
- Non-cytotoxic to human lung cells and safe to use
- No negative effect on the performance of air conditioning system
- Easy to apply to existing filter bag units
- Saves electricity and maintenance costs when comparing with UVC modules

An easy, effective, affordable and well proven solution that can arrest and kill the COVID-19 virus

Curie biotech compares favorably against potential competitor products across several key dimensions on filter application

Our product

Potential competitors

	Curie Biotech		HEPA Filter			UVC		Silver / Copper / Zinc / Titanium		Nanofiber	
How does it work?	Uses a strong positively charged polymer to capture and kill negatively charged COVID virus		Uses multiple layers of meltblown to capture COVID virus		Kills virus by electromagnetic radiation		Kills virus using the cytotoxicity of heavy metal		Uses high density fibric to capture COVID virus		
Does it capture the virus in fast air flow?	\bigotimes	Research showed that Curie was able to capture more than 99.9% of the virus and bacteria in fast air flow	\bigotimes	Captures virus in fast air flow by high density of fabric	\otimes	Does not capture any virus in fast air flow	\otimes	Does not capture any virus in fast air flow	\bigotimes	Captures virus in fast air flow by high density of fabric	
Does it kill 99.9% of the virus in a short time frame?	\bigotimes	Research showed that Curie was able to kill 99.9% of the virus and bacteria in a short time frame	\otimes	Does not kill any virus, virus can survive in HEPA filter for 7 days	\otimes	Deactivates 99.9% of the virus in 25 mins	\otimes	Deactivates 99.9% of the virus in long time frame	\otimes	Does not kill any virus, virus can survive in nanofiber for 7 days	
Is it non-toxic?	\bigotimes	Safer than natural food additives	\oslash	No toxic effects on humans	\otimes	Emit ozone to cause skin irritation	\otimes	Toxic effects on humans, FDA and Health Canada ban it	\bigotimes	No toxic effects on humans	
ls it easy to deploy?	\bigotimes	Easy to fix on air conditioning system, by adding 1 layer only	\otimes	Limit to air conditioning system with strong air flow only	\otimes	Needs extra electricity and installation	\bigotimes	Easy to fix on air conditioning system, by adding 1 layer only	\otimes	Limit to air conditioning system with strong air flow only	
Does it have low pressure drop?	\bigotimes	Low pressure drop, without significant lost in efficiency	\otimes	High pressure drop, resulting significant lost in efficiency	\bigotimes	No pressure drop, without significant lost in efficiency	\bigotimes	Low pressure drop, without significant lost in efficiency	\otimes	High pressure drop, resulting significant lost in efficiency	

We have made the following progress since 2020...

January 2020	April 2020		August 2020				
Discovered that formula from post printing process has strong effectiveness in killing virus and bacteria	Nelson Lab report showed that fabric deploying Curie Solvent increases VFE to 99.99%, and kills S. Aureus > 99.99% in 60 secs		ASTM Level 3-ply face masks that use Curie Fabric start selling in market				
March 2020 1 st patent granter Hong Kong and t United States on anti-bacterial filtr system by applyir polymer on readi available fabric	d in he viral & ration ng novel ly	June 2020 Launched Cu Hong Kong w fabric factory	rie Fabric in vith OEM	January 2021 Results from Finland Tampere University confirmed that the Curie filter has promising result on			

... And secured a wide range of certifications and patents

Safety

- Cytotoxicity on Human Lung Cells
- Cytotoxicity on Green Monkey Kidney Cells
- ISO10993
- EN ISO 21084:2019
- EN ISO 18254:2016
- EN ISO 14184:2011
- JIS L 1041
- DIN EN ISO 17070:2015
- 64 LFBG B 82.02-08
- EN ISO 14389:2014
- US CSPC-CH-C1001-09.4

Patents

- U.S. provisional patent
- HK short term patent
- Patent Cooperation Treaty

Flat mask / Respirator

- Flat mask
- ASTM F2100 / F2101 Level 3
- CE EN14683 Type IIR
- Intertek Tick Mark
- Australia ARTG

Respirator

- CE EN149 FFP2 (N95 Standard)
- CE EN149 FFP3 (N99 Standard)

Antiviral / Anti-bacterial activity & filtration efficiency

Antiviral / Anti-bacterial activity

- Killing SARS-229E (5 mins / 60 mins)
- Killing Coxsackievirus B6 (5 mins / 60 mins)
- Killing SARS-CoV-2 (2 hrs)
- Killing H3N2 (2 hrs)
- Killing Staphylococcus Aureus (1 min)

Filtration efficiency

- Viral Filtration Efficiency (VFE)
- Bacterial Filtration Efficiency (BFE)

Next 12 months, we hope to achieve the following key milestones

Immediate	Within 3 months	Within 6 months	Within 12 months
 Secure B2B business for disposable face mask 	 Secure the technology to apply on HEPA filter for air-conditioning systems and start selling Secure the technology to apply on reusable face mask and start selling 	 Secure the technology to apply on HEPA filter for EV and start selling 	 Secure the technology to apply on interior of automobile and start selling Rather than discussing these key milestones, work it be helpful to frame it in terms of <u>key US milestone</u> Might be more relevant to the US audience.

Id